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1. Introduction

The idea of supersymmetry plays an important role in physics. Since its invention [1 – 7]

a great experimental effort is undertaken to find supersymmetric particles in nature. The

reason for this lies in the fact that supersymmetry could provide appealing solutions to out-

standing problems in theoretical physics such as the so-called hierarchy problem. Further-

more, there are indications that supersymmetry can help in eliminating many of the diver-

gences of certain quantum field theories. If supersymmetry becomes a local gauge symmetry

it leads to supergravity, which is not as divergent as ordinary gravity [8, 9]. Finally, the

much-discussed superstring theories propose the existence of space-time supersymmetry.

Let us recall that supersymmetry extends the symmetry algebra of space-time by

adding supersymmetry generators. In the last two decades, however, a much more ambi-

tious attempt to modify space-time symmetries has arisen. It is based on noncommutative
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geometry [10 – 23] and tries to modify the whole space-time symmetry by deforming it in

a consistent manner. There is a great hope that such an approach yields a discretization

of space-time [24 – 29] which, in turn, implies an effective method for regularizing quantum

field theories [30].

In our previous work [31 – 37] attention was concentrated on space-time structures that

arise from q-deformation [38]. More concretely, we are interested in q-deformed quantum

spaces that could prove useful in physical applications. For this reason we deal with the

three- and four-dimensional q-deformed Euclidean space and the q-deformed Minkowski

space [39 – 41]. The symmetries of these quantum spaces are described by the Drinfeld-

Jimbo algebras Uq(su(2)) and Uq(so(4)) [42 – 44] and the q-deformed Lorentz algebra [45].

Finally, we can combine these symmetry algebras with their quantum spaces and obtain

q-analogs of the three- and four-dimensional Euclidean algebra and the Poincaré alge-

bra [46, 47].

It is an obvious thing to try to combine the ideas of supersymmetry with those of

deforming space-time symmetries (see, for example, refs. [48 – 57]) and the aim of this

article is to go the last step that makes the q-deformed Poincaré algebra and the q-deformed

Euclidean algebras in three and four dimensions into superalgebras. To reach this goal we

introduce supersymmetry generators with spinor indices and make suitable ansaetze for

their commutation relations with the generators of the q-deformed Euclidean algebras and

the q-deformed Poincaré algebra. From consistency arguments we get a system of equations

for the unknown coefficients of our ansaetze. Solving this system by a computer algebra

system like Mathematica [58] we found that the relations of the three- and four-dimensional

q-deformed Euclidean superalgebra are uniquely determined and the same holds for the q-

deformed Poincaré superalgebra.

To write down our superalgebras in a rather compact form it is helpful to recognize

adjoint actions as q-analogs of classical commutators. Using generators with definite trans-

formation properties, these q-commutators can often be expressed by q-deformed Pauli

matrices and their relatives. Last but not least, it should be mentioned that in some sense

the present article continues the reasonings of ref. [60], where we adapted many general

ideas about q-deformed quantum algebras to our framework of conventions and notations.

Throughout the paper it is understood that λ ≡ q − q−1 and λ+ ≡ q + q−1.

2. Symmetry algebras for three-dimensional q-deformed Euclidean space

In this section we first give a short review of the Hopf algebra Uq(su(2)). Then, we combine

this algebra with that of three-dimensional q-deformed momentum space and obtain a q-

analog of the three-dimensional Euclidean algebra. These considerations culminate in the

derivation of the three-dimensional q-deformed Euclidean superalgebra.

2.1 The Hopf algebra Uq(su(2))

The symmetry of q-deformed Euclidean space in three dimensions is described by the

quantum algebra Uq(su(2)) [41, 61 – 63]. In this manner Uq(su(2)) can be viewed as q-analog

– 2 –



J
H
E
P
1
2
(
2
0
0
7
)
0
3
5

of the algebra of three-dimensional angular momentum. It is spanned by the generators

L+, L−, L3 and τ3 subject to the relations

L±τ3 = q±4τ3L±, L3τ3 = τ3L3,

L−L+ − L+L− = (τ3)−1/2L3,

L±L3 − L3L± = q±1L±(τ3)−1/2. (2.1)

In the classical limit q → 1 we regain the Lie algebra SU(2) from the relations in (2.1).

This can easily be seen if we recognize that τ3 tends to 1 for q → 1. Thus, L+, L3, and

L− play the role of the components of q-deformed angular momentum in three dimensions.

Their coproducts, antipodes, and counits are found to be

∆(L±) = L± ⊗ (τ3)−1/2 + 1 ⊗ L±,

∆(L3) = L3 ⊗ (τ3)−1/2 + (τ3)1/2 ⊗ L3,

+ λ(τ3)1/2
(

q−1L− ⊗ L+ + qL+ ⊗ L−
)

, (2.2)

S(L±) = − L±(τ3)1/2,

S(L3) = (τ3)1/2(q2L+L− − q−2L−L+), (2.3)

ǫ(LA) = 0, A ∈ {+, 3,−}. (2.4)

In terms of the generators of q-deformed angular momentum, the Casimir operator of

Uq(su(2)) takes on the rather intuitive form [60]

L2 ≡ gAB LALB = −qL+L− + L3L3 − q−1L−L+, (2.5)

where gAB denotes the quantum metric of three-dimensional q-deformed Euclidean space.

Notice that repeated indices are to be summed over if not stated otherwise. The Casimir

property of L2 can be shown most easily by making use of the relations (2.1).

It should also be noted that the components of three-dimensional angular momen-

tum give rise to a quantum Lie algebra. To this end we introduce q-analogs of classical

commutators. These so-called q-commutators are determined by the Hopf structure of

Uq(su(2)) [60, 64 – 67]:

[LA, LB ]q ≡ LA
(1) LBS(LA

(2)) = S−1(LB
(2))L

ALB
(1), (2.6)

where we have written the coproduct in Sweedler notation. It is now straightforward to

check that the relations in (2.1) are equivalent to (see, for example ref. [60]):

[LA, LB]q = q2εABCgCD LD, (2.7)

where εABC denotes the three-dimensional q-deformed epsilon tensor (its non-vanishing

components are listed in the appendix).

The components L+, L3, and L− transform under Uq(su(2)) as a vector. Using the

three-dimensional q-deformed epsilon tensor we are able to assign the components of an-

gular momentum an antisymmetric tensor MAB [60]:

MAB ≡ k1 εABCgCD LD, k1 ∈ R. (2.8)
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More explicitly, we have as independent generators

M+3 = −k1q
−1L+, M3− = −k1q

−1L−,

M+− = −k1q
−2L3, (2.9)

with the additional conditions

M+− = −M−+, M33 = λM+−,

M++ = M−− = 0, M±3 = −q∓2M3±. (2.10)

We regain the components of three-dimensional angular momentum through

LD = k′
1 gDC εBAC MAB, k′

1 ∈ R, (2.11)

being tantamount to

L+ = −k′
1q

−3(q2 + q−2)M+3,

L3 = −k′
1q

−2(q2 + q−2)M+−,

L− = −k′
1q

−3(q2 + q−2)M3−, (2.12)

where our choice of conventions requires that

k1k
′
1 = q4(q2 + q−2)−1. (2.13)

Using the generators in (2.8) the Casimir in (2.5) reads as

L2 = (k′
1)

2q−4(q2 + q−2) gAD gBC MAB MCD. (2.14)

In the same manner, the relations for the quantum Lie algebra of Uq(su(2)) turn into

[MAB,MCD]q = (k′
1)

−1 q2(q2 + q−2)

q2 − 1 + q−2
(PA)AB

EF(PA)CD
GH gFGMEH, (2.15)

where PA stands for the antisymmetrizer of three-dimensional q-deformed Euclidean

space [41]. More explicitly,

[M+3,M+−]q = −q2[M+−,M+3]q = (k′
1)

−1q3(q2 + q−2)−1M+3,

[M+3,M3−]q = −[M3−,M+3]q = (k′
1)

−1q4(q2 + q−2)−1M+−,

[M+−,M3−]q = −q2[M3−,M+−]q = (k′
1)

−1q3(q2 + q−2)−1M3−,

[M+−,M+−]q = (k′
1)

−1q2(q2 + q−2)−1λM+−. (2.16)

Notice that in analogy to (2.6) we have

[MAB,MCD]q ≡ MAB
(1) MCDS(MAB

(2) ) = S−1(MCD
(2) )MABMCD

(1) . (2.17)
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2.2 The three-dimensional q-deformed Euclidean algebra

Next, we wish to combine the algebra of three-dimensional angular momentum with the

algebra of q-deformed momentum space. This way, we arrive at a q-analog of the three-

dimensional q-deformed Euclidean algebra. First of all, let us recall the commutation

relations for the three-dimensional momentum generators PA, A ∈ {+, 3,−}:

(PA)AB
CD PCPD = 0. (2.18)

The above condition implies as independent relations

P 3P± − q±2P±P 3 = 0, P−P+ − P+P− = λP 3P 3. (2.19)

It remains to specify the commutation relations between the generators of Uq(su(2))

and the momentum algebra. To this end, we first have to realize that the momentum

generators establish a vector representation of Uq(su(2)). The point now is that we can

combine a Hopf algebra H with its representation space A to form a so-called left-cross

product algebra A ⋊ H [61 – 63] built on A⊗H with product

(a ⊗ h)(b ⊗ g) = a(h(1) ⊲ b) ⊗ h(2) g, a, b ∈ A, h, g ∈ H. (2.20)

The last identity tells us that the commutation relations between symmetry generators and

representation space elements are completely determined by coproduct and action of the

Hopf algebra H, since we have

hb = (1 ⊗ h)(b ⊗ 1) = (h(1) ⊲ b) ⊗ h(2). (2.21)

Applying these ideas to Uq(su(2)) and the three-dimensional q-deformed momentum

algebra we obtain the relations

L±P± − P±L± = 0,

L±P∓ − P∓L± = ∓P 3(τ3),

L±P 3 − P 3L± = ∓q±1P±(τ3),

L3P± − q∓2P±L3 = ±q∓1λP 3L± ± q∓1P±(τ3),

L3P 3 − P 3L3 = λ(P−L+ − P+L−) − λP 3(τ3). (2.22)

By means of the q-commutator

[LA, PB ]q ≡ LA ⊲ PB = LA
(1) PBS(LA

(2)), (2.23)

which is nothing other than the adjoint action of LA on PB , the relations in (2.22) can be

written more compactly:

[LA, PB ]q = q2 εABCgCD PD. (2.24)

Using (2.11) one can verify that

[MAB, PC ]q = (k′
1)

−1q2(PA)AB
B′C′gC′CPB′

. (2.25)
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Last but not least, we would like to give the Casimir operators of the three-dimensional

q-deformed Euclidean algebra. With the commutation relations presented so far one can

verify that the operators

C1 ≡ gAB PAPB , C2 ≡ gAB LAPB (2.26)

commute with all generators of Uq(su(2)) and the momentum algebra.

2.3 Symmetry algebra in spinor notation

In ref. [59] we discussed q-analogs of Pauli matrices that enable us to construct a vector

out of two spinors. On these grounds, we can use q-deformed Pauli matrices to switch from

the vectorial generators LA to operators Mαβ with two spinor indices:

Mαβ = k′
2 (σ−1

A )αβLA, k′
2 ∈ R. (2.27)

From the completeness relation

(σA)αβ(σ−1
B )αβ = δA

B , (2.28)

we get, at once,

LA = k2 (σA)αβ Mαβ, k2 ∈ R (2.29)

with k2k
′
2 = 1. Explicitly, we have

M11 = k′
2 q−1L−, M22 = k′

2 q−1L+,

M12 = k′
2 q−1/2λ

−1/2
+ L3, M21 = k′

2 q−3/2λ
−1/2
+ L3, (2.30)

and

L+ = k2 qM22, L− = k2 qM11,

L3 = k2 qλ
−1/2
+ (q1/2M12 + q−1/2M21)

= k2 q 1/2λ
1/2
+ M12. (2.31)

The matrix entries of the Pauli matrices σA and σ−1
A can be looked up in appendix B

or ref. [59]. It should also be mentioned that the so-called ’inverse’ Pauli matrices σ−1
A

should not be confused with matrices being inverse in the sense of matrix multiplication

(for the details see again appendix B or ref. [59]). Especially, we have the identification

(σ−1
A )αβ = q−2(σA)αβ, A = {+, 3,−}. (2.32)

We can also start our considerations from the generators MAB introduced in (2.8).

They are related to the generators Mαβ by the formulae

Mαβ = k′
3 (σ−1

AB)αβMAB, MAB = k3 (σAB)αβMαβ, (2.33)
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where σAB and σ−1
AB denote the two-dimensional spin matrices of three-dimensional q-

deformed Euclidean space. For their explicit form we refer the reader again to appendix B

or ref. [59]. Written out explicitly, the relations in (2.33) become

M11 = −k′
3 q−5(q4 + 1)λ

−1/2
+ M3−, M22 = −k′

3 q−5(q4 + 1)λ
−1/2
+ M+3,

M12 = qM21 = −k′
3 q−7/2(q4 + 1)λ−1

+ M+−, (2.34)

and

M+3 = k3 q3λ
−1/2
+ M22, M3− = k3 q3λ

−1/2
+ M11,

M+− = λM33 = k3 q3/2M12. (2.35)

The two-dimensional spin matrices are subject to the completeness relation

(σAB)αβ(σ−1
CD)αβ = −q−2(q4 + 1)λ−1

+ (PA)AB
CD. (2.36)

This relation implies

k3k
′
3 = −q2(q4 + 1)−1λ+, (2.37)

as can be proven by inserting the two equations of (2.33) into each other. Finally, it

should be mentioned that the relations in (2.33) are consistent with (2.8) and (2.11) iff the

following condition is satisfied:

k1k2 = −q3λ
−1/2
+ k3. (2.38)

Last but not least, we use the generators Mαβ with two spinor indices to write the

quantum Lie algebra and the Casimir operator of Uq(su(2)) in an alternative form. Clearly,

the q-commutators between the Mαβ are defined in complete analogy to (2.17). Using the

correspondence between the Mαβ and the vectorial generators LA one can show that

[M12,M12]q = −k−1
2 q−1/2λλ

−1/2
+ M12,

[M11,M12]q = −q−2[M12,M11]q = k−1
2 q−3/2λ

−1/2
+ M11,

[M11,M22]q = −[M22,M11]q = k−1
2 q−3/2λ

1/2
+ M12,

[M12,M22]q = −q−2[M22,M12]q = k−1
2 q−3/2λ

−1/2
+ M22, (2.39)

and the remaining q-commutators all vanish. Inserting (2.31) in (2.5) we find the following

expression for the Casimir operator of Uq(su(2)):

C = −k2
2(q

3M11M22 + qM22M11 − qλ+M12M12). (2.40)

The q-commutators in (2.39) and the Casimir in (2.40) can be written in a closed form

by using the q-deformed spinor metric εαβ and the symmetric projector S corresponding

to the R̂-matrix of Uq(su(2)) [cf. eq. (2.44) in the subsequent subsection]. In this manner,

we have

[Mαβ ,Mγδ ]q = −k−1
2 q−1λ

1/2
+ Sαβ

β′α′Sγδ
δ′γ′ εα′δ′Mβ′γ′

,

C = −k2
2 q2 εαβεα′β′ Mα′αMββ′

, (2.41)

where the two-dimensional symmetrizer S can be expressed by the R̂-matrix for Uq(su(2)):

S = q−1λ−1
+ 1l + λ−1

+ R̂. (2.42)
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2.4 The three-dimensional q-deformed Euclidean superalgebra

In the previous sections we considered the q-deformed Euclidean algebra in three dimen-

sions. This algebra is a cross product of Uq(su(2)) and three-dimensional q-deformed Eu-

clidean space. In this sense, it is spanned by the generators of Uq(su(2)) and the components

of three-dimensional q-deformed momentum.

For implementing supersymmetry on q-deformed Euclidean space in three dimensions,

one has to extend its Euclidean algebra to a q-deformed Euclidean superalgebra. To de-

scribe a q-deformed version of N = 1 supersymmetry we have to add supersymmetry gen-

erators Qα and Q̄α with spinor indices. It is now our task to determine the commutation

relations concerning the new generators.

We assume that Q1 together with Q2 generate an antisymmetrized quantum plane and

the same should hold for Q̄1 and Q̄2:

QαQα = Q̄αQ̄α = 0, α = 1, 2,

Q1Q2 = −q−1Q2Q1, Q̄1Q̄2 = −q−1Q̄2Q̄1. (2.43)

Using the R̂-matrix of Uq(su(2)),

R̂ij
kl =











q 0 0 0

0 λ 1 0

0 1 0 0

0 0 0 q











, (2.44)

the commutation relations (2.43) can be written more compactly as

QαQβ = −qR̂αβ
α′β′Qα′

Qβ′

,

Q̄αQ̄β = −qR̂αβ
α′β′Q̄α′

Q̄β′

. (2.45)

If we introduce a q-deformed anticommutator for spinor operators by

{θα, θ̃β}k ≡ θαθ̃β + kR̂αβ
α′β′ θ̃α′

θβ′

, (2.46)

the relations in (2.45) become

{Qα, Qβ}q = {Q̄α, Q̄β}q = 0. (2.47)

It is obvious that Qα as well as Q̄α establish spin-1/2 representations of Uq(su(2)).

This observation fixes the commutation relations of the supersymmetry generators with

the generators of Uq(su(2)). As it was shown in ref. [60] the spinor operators Qα and Q̄α

then have to fulfill

[LA, Qα]q = −q−1λ
−1/2
+ (σA)β

αQβ,

[LA, Q̄α]q = −q−1λ
−1/2
+ (σA)β

αQ̄β, (2.48)

where the q-commutator is a kind of shorthand notation for the adjoint action, i.e.

[LA, V ]q ≡ LA
(1)V S(LA

(2)). (2.49)
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Notice that in (2.48) we used the q-deformed Pauli matrices σA given in ref. [59]. If we

instead work with the generators (2.9) or (2.30) we respectively have

[MAB, Qα]q = (k′
1)

−1(q2 + q−2)−1 Qβ(σAB)β
α,

[MAB, Q̄α]q = (k′
1)

−1(q2 + q−2)−1 Q̄β(σAB)β
α, (2.50)

and

[Mαβ, Qγ ]q = −k−1
2 q−1λ

−1/2
+ Sαβ

α′β′ εβ′γQα′

,

[Mαβ, Q̄γ ]q = −k−1
2 q−1λ

−1/2
+ Sαβ

α′β′ εβ′γQ̄α′

. (2.51)

It remains to find the commutation relations between Qα and Q̄α. In addition to this,

we have to specify how the momentum components PA commute with the supersymmetry

generators. To this end, one can make reasonable ansaetze for the wanted commutation

relations. First of all, they are restricted by the requirement that the commutation relations

have to be covariant with respect to the action of Uq(su(2)). Moreover, the commutation

relations should define an ideal of the algebra generated by Qα, Q̄α, PA, and the generators

of Uq(su(2)). In other words, multiplying a relation by a generator and commuting this

generator to the other side of the relation must not change the relation. This kind of

consistency condition completely determines the commutation relations between the Qα,

Q̄α, and PA.

This way, we found for the commutation relations between Qα and Q̄α that

Q̄1Q1 + Q1Q̄1 = q1/2λ
1/2
+ cP−,

Q̄1Q2 + q−1Q2Q̄1 = −q−1λQ1Q̄2 + qcP 3,

Q̄2Q1 + q−1Q1Q̄2 = cP 3,

Q̄2Q2 + Q2Q̄2 = q1/2λ
1/2
+ cP+, (2.52)

where the constant c remains undetermined. We are free to choose c = 1. The commutation

relations between PA and Qα take the form

P+Q1 = q−2Q1P+,

P+Q2 = Q2P+,

P 3Q1 = q−1Q1P 3,

P 3Q2 = q−1Q2P 3 + q−3/2λλ
1/2
+ Q1P+,

P−Q1 = Q1P−,

P−Q2 = q−2Q2P− + q−3/2λλ
1/2
+ Q1P 3. (2.53)
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Likewise, we have

P−Q̄1 = Q̄1P−,

P−Q̄2 = q2Q̄2P−,

P 3Q̄1 = qQ̄1P 3 − q3/2λλ
1/2
+ Q̄2P−,

P 3Q̄2 = qQ̄2P 3,

P+Q̄1 = q2Q̄1P+ − q3/2λλ
1/2
+ Q̄2P 3,

P+Q̄2 = Q̄2P+. (2.54)

Again, the relations in (2.52)–(2.54) can be written more compactly by means of q-

commutators and q-anticommutators. In the case of (2.52), for example, one checks that

{Q̄α, Qβ}q−1 = Q̄αQβ + q−1R̂αβ
α′β′ Qα′

Q̄β′

= c q3/2λ
1/2
+ (σ−1

A )αβPA. (2.55)

To find an analogous form for the relations in (2.53) and (2.54) we define (cf. ref. [67])

[PA, V ]q ≡ PA
(1)V S(PA

(2)), [PA, V ]q̄ ≡ PA
(1̄)V S̄(PA

(2̄)). (2.56)

The calculation of these q-commutators requires to know the Hopf structures for the mo-

mentum algebra. The corresponding coproducts, antipodes, and counits on the momentum

generators read as

∆(PA) = PA
(1) ⊗ PA

(2) = PA ⊗ 1 + LA
B ⊗ PB

∆̄(PA) = PA
(1̄) ⊗ PA

(2̄) = PA ⊗ 1 + L̄A
B ⊗ PB ,

S(PA) = −S(LA
B)PB ,

S̄(PA) = −S(L̄A
B)PB ,

ǫ(PA) = ǭ(PA) = 0. (2.57)

Notice that L and L̄ respectively stand for the L-matrix and its conjugate. Their explicit

form can be found in refs. [35, 32]. It should also be mentioned that these L-matrices

realize the generators of the quantum group SUq(2) within the algebra Uq(su(2)). On these

grounds, they depend on generators of Uq(su(2)) and a unitary scaling operator Λ subject to

ΛQα = q2QαΛ, ΛQ̄α = q2Q̄αΛ. (2.58)

Let us now collect all relations of the three-dimensional q-deformed Euclidean
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superalgebra:

[LA, LB ]q = q2εABCgCD LD,

[LA, PB ]q = q2εABCgCD PD,

(PA)AB
CD PCPD = 0,

[LA, Qα]q = −q−1λ
−1/2
+ (σA)β

αQβ,

[LA, Q̄α]q = −q−1λ
−1/2
+ (σA)β

αQ̄β,

[PA, Qα]q̄ = 0, [PA, Q̄α]q = 0,

{Qα, Qβ}q = 0, {Q̄α, Q̄β}q = 0,

{Q̄α, Qβ}q−1 = q3/2λ
1/2
+ (σ−1

A )αβPA. (2.59)

We would like to end this section with some remarks about this algebra. First of all,

the reader should be aware of the fact that Uq(su(2)) cannot be generated by L+, L3, and

L− alone. For this reason we have to add the grouplike operator τ3 and take attention of

its commutation relations with the generators Qα, Q̄α, and PA:

τ3P± = q∓4P±τ3, τ3P 3 = P 3τ3,

τ3Q1 = q2Q1τ3, τ3Q2 = q−2Q2τ3,

τ3Q̄1 = q2Q̄1τ3, τ3Q̄2 = q−2Q̄2τ3. (2.60)

In the form of (2.59) the q-deformed superalgebra is strongly reminiscent of its clas-

sical counterpart, to which it tends if q → 1. Notice that in the undeformed limit the

q-commutators and q-anticommutators then pass into ordinary commutators and anticom-

mutators, respectively.

It should also be mentioned that the algebra in (2.59) is compatible with the conjuga-

tion assignment

LA = gABLB , τ3 = τ3, PA = gABPB ,

Qα = −εαβ Q̄β, Q̄α = εαβ Qβ. (2.61)

Indeed, one can check that conjugating the relations of our superalgebra and applying (2.61)

does not change the relations in (2.59). In this sense, the three-dimensional q-deformed

Euclidean superalgebra is real.

3. Symmetry algebras for four-dimensional q-deformed Euclidean space

The considerations for the three-dimensional q-deformed Euclidean space carry over to the

four-dimensional one. For this reason, we restrict ourselves to stating the results, only.

3.1 The four-dimensional q-deformed Euclidean algebra

The symmetry of four-dimensional q-deformed Euclidean space is described by the quantum

algebra Uq(so(4)). This algebra can be viewed as tensor product of two commuting copies

of Uq(su(2)), i.e.

Uq(so(4)) ∼= Uq(su(2)) ⊗ Uq(su(2)). (3.1)
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The two sets of Uq(su(2))-generators are denoted by L±
i , Ki, i = 1,2. Thus, the commuta-

tion relations between generators with the same lower index read (cf. ref. [68])

q−1L+
i L−

i − qL−
i L+

i = λ−1(1 − K−2
i ), (3.2)

L±
i Ki = q∓2KiL

±
i , i = 1, 2,

whereas generators with different lower indices always commute.

The generators of Uq(so(4)) are related to the components Lµν , µ, ν = 1,. . .,4, of an

antisymmetric tensor operator (see, for example, ref. [68]). In ref. [60] we saw that the Lµν

give rise to a quantum Lie algebra of Uq(so(4))̇. The explicit form of the corresponding

q-commutators can just as well be found in the work of ref. [60]. Here, we only give the

general expression

[Lµν , Lρσ]q = −q−1λ2
+(PA)µν

ν′ρ′′(PA)ρσ
ρ′σ′gρ′′ρ′Lν′σ′

, (3.3)

where PA and gµν respectively stand for an antisymmetrizer and the quantum metric

related to Uq(so(4)).

The quantum algebra Uq(so(4)) has two Casimir operators. They are

C1 ≡ gµνgρσLµρLνσ

= 2L23L23 + λ+(L12L34 + L13L24)

+ q2λ+(L24L13 + L34L12) + (q2 + q−2)L14L14

− λ(L14L23 + L23L14), (3.4)

and

C2 ≡ εµνρσLµνLρσ

= q2λ2
+(L14L23 + L23L14) + q2λ2

+(L12L34 − L13L24)

+ q4λ2
+(L34L12 − L24L13) − q2λλ2

+L14L14, (3.5)

where εµνρσ denotes the totally antisymmetric tensor of four-dimensional q-deformed Eu-

clidean space.

The Euclidean algebra of four-dimensional q-deformed Euclidean space is again a

cross product of the quantum algebra Uq(so(4)) and the momentum algebra subject to

the relations

P 1Pµ = qPµP 1, PµP 4 = qPµP 4, µ = 2, 3,

P 2P 3 = P 3P 2, P 4P 1 = P 1P 4 + λP 2P 3. (3.6)

For the sake of completeness let us note that the above relations can alternatively be formu-

lated by means of the antisymmetrizer PA of four-dimensional q-deformed Euclidean space:

(PA)µν
µ′ν′ Pµ′

P ν′

= 0. (3.7)

The momentum components Pµ, µ = 1,. . . ,4, transform under Uq(so(4)) as a vec-

tor operator. The commutation relations between the components of the antisymmetric
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tensor operator Lµν and the momentum components Pµ were presented in ref. [60]. The

corresponding q-commutators take the general form

[Lµν , P ρ]q = −q−1λ+(PA)µν
ν′ρ′ gρ′ρP ν′

. (3.8)

The four-dimensional q-deformed Euclidean algebra has two Casimir operators. It

should be clear that one Casimir is given by the momentum square

m2 ≡ gµνPµP ν . (3.9)

To get the second Casimir operator we are looking for a right-vector operator whose com-

ponents W µ, µ = 1,. . . ,4, commute with momenta. Making suitable ansaetze for the W µ,

µ = 1,. . . ,4, within the Euclidean algebra we are finally led to

W 1 = 2λ−1(K
1/2
1 K

−1/2
2 − K

−1/2
1 K

1/2
2 )P 1

+ 2q−1(K
1/2
1 K

−1/2
2 P 2L−

1 − K
−1/2
1 K

1/2
2 P 3L−

2 ),

W 2 = 2λ−1(K
1/2
1 K

1/2
2 − K

−1/2
1 K

−1/2
2 )P 2

+ 2qK
1/2
1 K

1/2
2 P 1L+

1 + 2q−1K
1/2
1 K

1/2
2 P 4L−

2

+ 2λK
1/2
1 K

1/2
2 P 3L−

2 L+
1 ,

W 3 = 2λ−1(K
1/2
1 K

1/2
2 − K

−1/2
1 K

−1/2
2 )P 3

− 2qK
1/2
1 K

1/2
2 P 1L+

2 − 2q−1K
1/2
1 K

1/2
2 P 4L−

1

− 2λK
1/2
1 K

1/2
2 P 2L−

1 L+
2 ,

W 4 = 2λ−1(K
−1/2
1 K

1/2
2 − K

1/2
1 K

−1/2
2 )P 4

+ 2q(K
−1/2
1 K

1/2
2 P 2L+

2 − K
1/2
1 K

−1/2
2 P 3L+

1 ). (3.10)

Notice that in the undeformed limit these components pass into the classical expressions

W µ = εµνρσPνLρσ. From the W µ we can build a non-trivial Casimir operator via

W 2 ≡ gµνW νW µ. (3.11)

This operator commutes with all elements of Uq(so(4)), since it is defined as square of a

right-vector. The components W µ commute with momenta, thus the same holds for W 2.

The explicit form of W 2 is given in appendix C.

3.2 Symmetry algebra in spinor notation

It is sometimes helpful to introduce a new set of generators for Uq(so(4)), replacing the

generators Lµν with vector indices by the generators Mαβ and M̃ α̇β̇ with spinor indices:

Mαβ = k1(σ
−1
µν )αβ Lµν ,

M̃ α̇β̇ = k2(σ̃
−1
µν )α̇β̇ Lµν , (3.12)

Lµν = k′
1(σ

µν)αβ Mαβ + k′
2(σ̃

µν)α̇β̇ M̃ α̇β̇, (3.13)
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where the constants have to satisfy the condition

k1k
′
1 = k2k

′
2 = λ−1

+ . (3.14)

More explicitly, we have

M11 = −k1q
1/2λ+L13, M22 = k1q

1/2λ+L24,

M12 = qM21 = k1q
1/2(qL14 − L23), (3.15)

M̃11 = −k2q
1/2λ+L12, M̃22 = k2q

1/2λ+L34,

M̃12 = qM̃21 = k2q
−1/2L14 + k2q

1/2L23, (3.16)

and

L12 = −k′
2q

−1/2M̃11, L13 = −k′
1q

−1/2M11,

L14 = k′
2q

−1/2M̃12 + k′
1q

−1/2M12,

L23 = k′
2q

1/2M̃12 − k′
1q

−3/2M12,

L24 = k′
1q

−1/2M22, L34 = k′
2q

−1/2M̃22. (3.17)

The q-commutators of the quantum Lie algebra of Uq(so(4)) in terms of Mαβ and M̃ α̇β̇ are

given by

[Mαβ,Mγδ ]q = (k′
1)

−1q−1λ+ Sαβ
β′α′Sγδ

δ′γ′ εα′δ′Mβ′γ′

,

[M̃ α̇β̇, M̃ γ̇δ̇]q = (k′
2)

−1q−1λ+ Sα̇β̇
β̇′α̇′S

γ̇δ̇
δ̇′γ̇′ ε

α̇′ δ̇′M̃ β̇′γ̇′

,

[Mαβ, M̃ γ̇δ̇]q = [M̃ α̇β̇,Mγδ ]q = 0. (3.18)

In spinor notation the two Casimirs of Uq(so(4)) [cf. eqs. (3.4) and (3.5)] become

C1 = − k′2
1 λ+ εαβεα′β′Mα′αMββ′

− k′2
2 λ+ εα̇β̇εα̇′β̇′M̃

α̇′α̇M̃ β̇β̇′

, (3.19)

C2 = k′2
1 q2λ2

+ εαβεα′β′Mα′αMββ′

− k′2
2 q2λ2

+ εα̇β̇εα̇′β̇′M̃
α̇′α̇M̃ β̇β̇′

. (3.20)

These expressions are linked to the Casimir operators of the two Uq(su(2))-subalgebras of

Uq(so(4)):

C1 + q−2λ−1
+ C2 = −2k′2

2 λ+εα̇β̇εα̇′β̇′M̃
α̇′α̇M̃ β̇β̇′

,

C1 − q−2λ−1
+ C2 = −2k′2

1 λ+εαβεα′β′Mα′αMββ′

. (3.21)

3.3 The four-dimensional q-deformed Euclidean superalgebra

In analogy to the three-dimensional case the four-dimensional q-deformed Euclidean super-

algebra is generated by the generators of Uq(so(4)), the momentum Pµ, and the supersym-

metry generators Qα, Q̃α̇, α,α̇ = 1, 2. Again, the supersymmetry generators carry spinor

indices. Thus, the Qα as well as the Q̃α̇ span an antisymmetrized quantum plane, i.e.

QαQα = Q̃α̇Q̃α̇ = 0, α, α̇ = 1, 2,

Q1Q2 = −q−1Q2Q1, Q̃1Q̃2 = −q−1Q̃2Q̃1. (3.22)
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Furthermore, the supersymmetry generators transform as spinor operators under

Uq(so(4)). More concretely, they refer to the representations (1/2, 0) and (0, 1/2). On these

grounds, the q-commutators between the supersymmetry generators and the Lµν become

[Lµν , Qα]q = −q−1(σµν)β
α Qβ,

[Lµν , Q̃α̇]q = −q−1(σ̃µν)β̇
α̇ Q̃β̇, (3.23)

where σµν and σ̃µν denote the two-dimensional spin matrices to four-dimensional q-

deformed Euclidean space (see appendix B or ref. [59]). For the explicit form of the above

q-commutators we refer the reader to ref. [60]. In spinor notation we have

[Mαβ , Qγ ]q = −k′−1
1 q−1 Sαβ

α′β′ εβ′γQα′

,

[M̃ α̇β̇, Q̃γ̇ ]q = −k′−1
2 q−1 Sα̇β̇

α̇′β̇′ ε
β̇′γ̇Q̃α̇′

,

[Mαβ , Q̃γ̇ ]q = [M̃ α̇β̇, Qγ ]q = 0. (3.24)

Next, we come to the relations between the generators Qα and Q̃α̇. These relations

are covariant with respect to Uq(so(4)) if they take the form

Q̃1Q1 + Q1Q̃1 = cP 1,

Q̃1Q2 + Q2Q̃1 = cP 2,

Q̃2Q1 + Q1Q̃2 = cP 3,

Q̃2Q2 + Q2Q̃2 = −cP 4, (3.25)

where c again denotes an undetermined constant, which we can set equal to 1. With

the help of the Pauli matrices for q-deformed Euclidean space in four dimensions (see

appendix B and ref. [59]) the above relations can be written as (c = 1)

{Q̃α̇, Qβ} = (σ̃−1
µ )α̇βPµ. (3.26)

Notice that the anticommutator in the last formula is the ordinary one.

Last but not least, we have to specify how the momentum operators commute with

the supersymmetry generators. Again, the commutation relations between momentum

operators and supersymmetry generators are uniquely determined by the requirement that

they have to be consistent with our previous relations. This way, we have

P 1Q1 = Q1P 1, P 2Q2 = Q2P 2,

P 3Q1 = Q1P 3, P 4Q2 = Q2P 4,

P 2Q1 = q−1Q1P 2,

P 4Q1 = q−1Q1P 4,

P 1Q2 = q−1Q2P 1 + q−1λQ1P 2,

P 3Q2 = q−1Q2P 3 − q−1λQ1P 4, (3.27)
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and

P 1Q̃1 = Q̃1P 1, P 2Q̃1 = Q̃1P 2, (3.28)

P 3Q̃2 = Q̃2P 3, P 4Q̃2 = Q̃2P 4,

P 1Q̃2 = qQ̃2P 1,

P 2Q̃2 = qQ̃2P 2,

P 3Q̃1 = qQ̃1P 3 − qλQ̃2P 1,

P 4Q̃1 = qQ̃1P 4 + qλQ̃2P 2. (3.29)

These relations can again be generated from q-commutators:

[Pµ, Qα]q̄ = 0, [Pµ, Q̃α̇]q = 0. (3.30)

Notice that the two types of q-commutators are defined as in (2.56), but now we have to use

the Hopf structures for the four-dimensional q-deformed Euclidean space (see ref. [35, 32]).

In this respect, it should be mentioned that these Hopf structures depend on a unitary

scaling operator with

ΛQα = qQαΛ, ΛQ̃α̇ = qQ̃α̇Λ. (3.31)

Now, we have everything together to write down the q-deformed Euclidean superalge-

bra in four dimensions:

[Lµν , Lρσ]q = −q−1λ2
+ (PA)µν

ν′ρ′′(PA)ρσ
ρ′σ′ gρ′′ρ′Lν′σ′

,

[Lµν , P ρ]q = −q−1λ+ (PA)µν
ν′ρ′ g

ρ′ρP ν′

,

[Lµν , Qα]q = −q−1(σµν)β
αQβ,

[Lµν , Q̃α̇]q = −q−1(σ̃µν)β̇
α̇Q̃β̇,

(PA)µν
µ′ν′ Pµ′

P ν′

= 0,

[Pµ, Qα]q̄ = 0, [Pµ, Q̃α̇]q = 0,

{Qα, Qβ}q = 0, {Q̃α̇, Q̃β̇}q = 0,

{Q̃α̇, Qβ} = (σ̃−1
µ )α̇βPµ. (3.32)

For the sake of completeness we would like to write down how the symmetry generators

Ki commute with the momenta and the supercharges

K1P
1 = q−1P 1K1, K2P

1 = q−1P 1K2,

K1P
2 = qP 2K1, K2P

2 = q−1P 2K2,

K1P
3 = q−1P 3K1, K2P

3 = qP 3K2,

K1P
4 = qP 4K1, K2P

4 = qP 4K2,

K1Q
1 = qQ1K1, K1Q

2 = q−1Q2K1,

K2Q̃
1 = q−1Q̃1K2, K2Q̃

2 = qQ̃2K2. (3.33)

The remaining relations are trivial.
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It should be remarked that conjugating these relations and making use of the conju-

gation properties

Lµν = gµµ′gνν′Lν′µ′

, Pµ = gµµ′Pµ′

,

Qα = εαα′Qα′

, Q̃α = −εαα′Q̃α′

, (3.34)

we obtain a second four-dimensional q-deformed Euclidean superalgebra, which differs from

the above one by the commutation relations between momentum generators and supergen-

erators, only. Instead of (3.27) and (3.29) we would have

P 1Q1 = Q1P 1, P 2Q2 = Q2P 2,

P 3Q1 = Q1P 3, P 4Q2 = Q2P 4,

P 1Q2 = qQ2P 1, P 3Q2 = qQ2P 3,

P 2Q1 = qQ1P 2 − qλQ2P 1,

P 4Q1 = qQ1P 4 + qλQ2P 3. (3.35)

and

P 1Q̃1 = Q̃1P 1, P 2Q̃1 = Q̃1P 2,

P 3Q̃2 = Q̃2P 3, P 4Q̃2 = Q̃2P 4,

P 3Q̃1 = q−1Q̃1P 3, P 4Q̃1 = q−1Q̃1P 4,

P 1Q̃2 = q−1Q̃2P 1 + q−1λQ̃1P 3,

P 2Q̃2 = q−1Q̃2P 2 − q−1λQ̃1P 4. (3.36)

In terms of q-commutators these relations become

[Pµ, Qα]q = 0, [Pµ, Q̃α̇]q̄ = 0. (3.37)

4. Symmetry algebras for q-deformed Minkowski space

In this section we apply our considerations to q-deformed Minkowski space leading us to a

q-analog of the Poincaré superalgebra. From a physical point of view this case is the most

interesting one.

4.1 The q-deformed Poincaré algebra

The q-deformed Poincaré algebra is a cross product of the q-deformed Lorentz algebra

and the momentum algebra of q-deformed Minkowski space. In our work we often use a

formulation of q-deformed Lorentz algebra as it was given in ref. [46]. In ref. [60], however,

we considered as Lorentz generators the components of an antisymmetric tensor of second

rank. Its components V µν , µ, ν ∈ {0,+,−, 3}, enable us to formulate the quantum Lie

algebra of q-deformed Lorentz algebra as follows:

[V µν , V ρσ]q = −q−1λ+(PA)µν
ν′ρ′′(PA)ρσ

ρ′σ′ ηρ′′ρ′V ν′σ′

, (4.1)
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where ηµν and PA respectively stand for the quantum metric and an antisymmetrizer of q-

deformed Minkowski space. For the explicit form of these q-commutators we again refer to

ref. [60]. From the same reference we know the two Casimirs of q-deformed Lorentz algebra:

C1 ≡ ηµνηρσV µρV νσ, C2 ≡ εµνρσV µνV ρσ. (4.2)

The momentum algebra of q-deformed Minkowski space is spanned by the momentum

components Pµ, µ ∈ {0,+,−, 3}, subject to

PµP 0 = P 0Pµ, µ ∈ {0,+,−, 3},

P 3P± − q±2P±P 3 = −qλP 0P±,

P−P+ − P+P− = λ(P 3P 3 − P 0P 3). (4.3)

Let us recall that the Pµ, µ ∈ {0,+,−, 3}, behave as a four-vector operator under q-

deformed Lorentz transformations. For this reason, the commutation relations between

generators of the q-deformed Lorentz algebra and the corresponding momentum compo-

nents take the form (see also ref. [60])

[V µν , P ρ]q = −q−1(PA)µν
ν′ρ′ η

ρ′ρP ν′

. (4.4)

The Casimir operators of q-deformed Poincaré algebra are found from the same reason-

ings already applied to the four-dimensional q-deformed Euclidean algebra. In this manner,

one Casimir is given by the momentum square

m2 ≡ gµνPµP ν , (4.5)

and the q-analog of the spin Casimir becomes [69, 70]

W 2 ≡ ηνµW µW ν , (4.6)

where we have to take as components of the q-deformed Pauli-Lubanski-vector:

W+ = q2λ−1P+ − q2λ−1P+(τ3)1/2(τ1)2 − q5λP−(τ3)1/2(T 2)2

− q9/2λ
1/2
+ (τ3)1/2P 3T 2τ1 + q5/2λ

−1/2
+ (P 3 − P 0)T+,

W 3 = − λ−1P 3 − q−1/2λ
1/2
+ P−T 2σ2 − q1/2λ

1/2
+ P+S1τ1

− qλλ+P 3T 2S1 − qλλ−1
+ (P 3 − P 0)(τ3)1/2T+T−

+ q−1/2λ
−1/2
+ P−(τ3)−1/2T+ − q1/2λ

−1/2
+ P+(τ3)−1/2T−

+ λ−1λ−1
+ ((q−1P 3 − q−1P 0)(τ3)1/2 + (qP 3 + q−1P 0)(τ3)−1/2),

W 0 = − λ−1P 0 + q−1λλ−1
+ (P 0 − P 3)(τ3)−1/2T+T−

+ λ−1λ−1
+ (q(P 0 − P 3)(τ3)1/2 + (q−1P 0 + qP 3)(τ3)−1/2)

+ q−1/2λ
−1/2
+ P−(τ3)−1/2T+ − q1/2λ

−1/2
+ P+(τ3)−1/2T−,

W− = q2λ−1P− − q−5/2λ
−1/2
+ (P 3 − P 0)T− − qλP+(τ3)−1/2(S1)2

− q−1/2λ
1/2
+ P 3(τ3)−1/2S1σ2 − q−2λ−1P−(τ3)−1/2(σ2)2. (4.7)

Note that T+, T−, S1, T 2, τ1, σ2 denote generators of the q-deformed Lorentz algebra [46].

For the explicit form of W 2 see appendix C.
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4.2 Symmetry algebra in spinor notation

In this section we proceed in very much the same way as was done in section 3.2 for the

four-dimensional q-deformed Euclidean algebra. First, we introduce Lorentz generators

with spinor indices

Mαβ = k1(σ
−1
µν )αβ V µν ,

M̄ α̇β̇ = k2(σ̄
−1
µν )α̇β̇ V µν , (4.8)

V µν = k′
1(σ

µν)αβ Mαβ + k′
2(σ̄

µν)α̇β̇ M̄ α̇β̇, (4.9)

where the two-dimensional spin matrices of q-deformed Minkowski space can be found in

ref. [59]. For the above identities to be consistent with each other we have to require that

the constants ki, k′
i, i = 1,2, fulfill

k1k
′
1 = k2k

′
2 = λ−1

+ . (4.10)

If we set k1 = k2, the Lorentz generators Mαβ and M̄ α̇β̇ show the conjugation properties

Mαβ = εα̇α̇′εβ̇β̇′M̄
β̇′α̇′

M̄ α̇β̇ = εαα′εββ′M̄β′α′

. (4.11)

More explicitly, we have

M11 = k1λ
1/2
+ (V 3− − V 0−),

M12 = qM21 = k1(q
−1/2V +− + q1/2V 30),

M22 = k1λ
1/2
+ (q−2V +3 + V +0). (4.12)

and

M̄11 = −k2λ
1/2
+ (V 0− + q−2V 3−),

M̄12 = qM̄21 = −k2q
1/2(qV +− − V 30),

M̄22 = −k2λ
1/2
+ (V +3 − V +0). (4.13)

Solving these equalities for the independent V µν yields

V +3 = qλ
−1/2
+ (k′

1M
22 − k′

2M̄
22),

V +0 = λ
−1/2
+ (k′

1qM
22 + k′

2q
−1M̄22),

V +− = q−1/2(k′
1M

12 − k′
2M̄

12),

V 30 = k′
1q

1/2M12 + k′
2q

−3/2M̄12,

V 3− = qλ
−1/2
+ (k′

1M
11 − k′

2M̄
11),

V 0− = −λ
−1/2
+ (k′

1q
−1M11 + k′

2qM̄
11). (4.14)

For the quantum Lie algebra in spinor notation we have

[Mαβ ,Mγδ ]q = −(k′
1)

−1 Sαβ
β′α′Sγδ

δ′γ′ εα′δ′Mβ′γ′

,

[M̄αβ , M̄ γ̇δ̇]q = −(k′
2)

−1 Sα̇β̇
β̇′α̇′S

γ̇δ̇
δ̇′γ̇′ ε

α̇′ δ̇′M̄ β̇′γ̇′

,

[Mαβ , M̄ γ̇δ̇]q = [M̄ α̇β̇,Mγδ ]q = 0. (4.15)
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In spinor notation the Casimirs of q-deformed Lorentz algebra become

C1 = − k′2
1 λ+ εαβεα′β′ Mα′αMββ′

− k′
2
2λ+ εα̇β̇εα̇′β̇′ M̄

α̇′α̇M̄ β̇β̇′

, (4.16)

C2 = − k′2
1 (3q−4 + 1 + 2q−1λ) εαβεα′β′ Mα′αMββ′

+ k′2
2 (3q−4 + 1 + 2q−1λ) εα̇β̇εα̇′β̇′ M̄

α̇′α̇M̄ β̇β̇′

. (4.17)

From these formulae we can read off the Casimirs of the two Uq(su(2))-subalgebras:

(3q−4+1+2q−1λ)λ−1
+ C1+C2 = −2k′2

1 (3q−4+1+2q−1λ) εαβεα′β′ Mα′αMββ′

,

(3q−4+1+2q−1λ)λ−1
+ C1 − C2 = −2k′2

2 (3q−4+1+2q−1λ) εα̇β̇εα̇′β̇′ M̄
α̇′α̇M̄ β̇β̇′

. (4.18)

4.3 The q-deformed Poincaré superalgebra

Now, we extend the q-deformed Poincaré algebra to the q-deformed Poincaré superalgebra.

To this end, we introduce the supersymmetry generators Qα and Q̄α̇. These generators

carry spinor indices, so they fulfill the well-known quantum plane relations:

QαQα = Q̄α̇Q̄α̇ = 0, α, α̇ = 1, 2, (4.19)

Q1Q2 = −q−1Q2Q1, Q̄1Q̄2 = −q−1Q̄2Q̄1.

Furthermore, they transform as spinor operators under q-deformed Lorentz transforma-

tions. This observation implies the q-commutators

[V µν , Qα]q = q−1λ−1
+ (σµν)β

αQβ,

[V µν , Q̄α̇]q = q−1λ−1
+ (σ̄µν)β̇

α̇Q̄β̇. (4.20)

Using Lorentz generators with spinor indices we alternatively have

[Mαβ , Qγ ]q = −(k′
1)

−1q−1λ−1
+ Sαβ

α′β′ εβ′γQα′

,

[M̄ α̇β̇, Q̄γ̇ ]q = −(k′
2)

−1q−1λ−1
+ Sα̇β̇

α̇′β̇′ ε
β̇′γ̇Q̄α̇′

,

[Mαβ , Q̄γ̇ ]q = [M̄ α̇β̇, Qγ ]q = 0. (4.21)

Next, we turn to the relations between the two supergenerators Qα and Q̄α̇. We found

Q̄1Q1 + Q1Q̄1 = c q−1P−,

Q̄1Q2 + q−1Q2Q̄1 = −q−1λQ1Q̄2 + c q−1/2λ
−1/2
+ (P 3 + q−2P 0),

Q̄2Q1 + q−1Q1Q̄2 = −c q−3/2λ
−1/2
+ (P 0 − P 3),

Q̄2Q2 + Q2Q̄2 = c q−1P+, (4.22)

or, for short,

{Q̄α̇, Qβ}q−1 = c(σ̄−1
µ )α̇βPµ, (4.23)

where the σ̄−1
µ denote Pauli matrices for q-deformed Minkowski space (see appendix B and

ref. [59]). The constant c can be set equal to 1.
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The commutation relations between momentum generators and supergenerators read

P+Q1 = q−2Q1P+, P+Q2 = Q2P+,

P 0Q1 = q−1Q1P 0, P 0Q2 = q−1Q2P 0,

P 3Q1 = q−1Q1P 3,

P 3Q2 = q−1Q2P 3 + q−3/2λλ
1/2
+ Q1P+,

P−Q1 = Q1P−,

P−Q2 = q−2Q2P− + q−3/2λλ
1/2
+ Q1P 3, (4.24)

and

P 0Q̄1 = qQ̄1P 0, P 0Q̄2 = qQ̄2P 0,

P−Q̄1 = Q̄1P−, P−Q̄2 = q2Q̄1P−,

P 3Q̄1 = qQ̄1P 3 − q3/2λλ
1/2
+ Q̄2P−,

P 3Q̄2 = qQ̄2P 3,

P+Q̄1 = q2Q̄1P+ − q3/2λλ
1/2
+ Q̄2P 3,

P+Q̄2 = Q̄2P+. (4.25)

Let us note that in very much the same way as was done in section 2.4 the above

commutation relations between momentum generators and supergenerators can again be

written in terms of q-commutators. To this end, the scaling operator appearing in the Hopf

structure of the momentum generators has to satisfy

ΛQα = q−2QαΛ, ΛQ̄α̇ = q−2Q̄α̇Λ. (4.26)

Now, we have everything together to write down the q-deformed Poincaré superalgebra:

[V µν , V ρσ]q = −q−1λ+(PA)µν
ν′ρ′′(PA)ρσ

ρ′σ′ηρ′′ρ′V ν′σ′

,

[V µν , P ρ]q = −q−1(PA)µν
ν′ρ′η

ρ′ρP ν′

,

[V µν , Qα]q = q−1λ−1
+ (σµν)β

αQβ,

[V µν , Q̄α̇]q = q−1λ−1
+ (σ̄µν)β̇

α̇Q̄β̇,

(PA)µν
µ′ν′ Pµ′

P ν′

= 0,

[Pµ, Qα]q = 0, [Pµ, Q̄α̇]q̄ = 0,

{Qα, Qβ}q = 0, {Q̄α̇, Q̄β̇}q = 0,

{Q̄α̇, Qβ}q−1 = (σ̄−1
µ )α̇βPµ. (4.27)

This algebra is invariant under the conjugation

Pµ = ηµνP ν , Qα = −εα̇β̇Q̄β̇, Q̄α̇ = εαβQβ,

V µν = (−1)δµ0+δν0ηµµ′ηνν′V ν′µ′

. (4.28)
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5. Conclusion

Let us end with some comments on what we have done so far. We considered the q-

deformed Poincaré algebra and the q-deformed Euclidean algebra in three and four di-

mensions. These algebras describe the symmetry of q-deformed Minkowski space and the

q-deformed Euclidean spaces in three and four dimensions. We extended these algebras

to superalgebras by adding two supersymmetry generators with spinor indices. Exploit-

ing consistency arguments we could determine all commutation relations concerning the

supersymmetry generators. Furthermore, we were able to write down our q-deformed su-

peralgebras in a way that reveals striking similarities to their undeformed counterparts. To

achieve this we introduced generators with definite transformation properties and defined

their adjoint actions as q-commutators.

Lastly, we would like to point out that the q-deformed Poincaré superalgebra should

be useful in q-deforming supersymmetric models. To this end, we reconsider eq. (4.23) and

contract it with the Pauli matrix (σ̄µ)α̇β. In doing so we obtain

Pµ = (σ̄µ)α̇β

[

Q̄α̇Qβ + q−1R̂α̇β
β′α̇′ Qβ′

Q̄α̇′]

=
[

(σ̄µ)α̇β Q̄α̇Qβ + q−2(σµ)βα̇ QβQ̄α̇
]

. (5.1)

Notice that the second equality in (5.1) holds due to (see ref. [59])

(σµ)β′α̇′ = q(σ̄µ)α̇β R̂α̇β
β′α̇′ . (5.2)

From (5.1) we get the supersymmetric Hamiltonian

H ≡ P 0 =
[

(σ̄0)α̇β Q̄α̇Qβ + q−2(σ0)βα̇ QβQ̄α̇
]

=
[

− q−1/2 Q̄1Q2 + q1/2 Q̄2Q1

+ q−5/2 Q1Q̄2 − q−3/2 Q2Q̄1
]

. (5.3)

The conjugation properties of Qα and Q̄α̇ imply

H = P 0 = P 0 = H, (5.4)

i.e. our q-deformed supersymmetric Hamiltonian is a real operator. It should also be

mentioned that H does not commute with the supersymmetry generators, since we have

P 0Q1 = q−1Q1P 0, P 0Q2 = q−1Q2P 0,

P 0Q̄1 = qQ̄1P 0, P 0Q̄2 = qQ̄2P 0. (5.5)
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A. Invariant tensors of q-deformed quantum spaces

The aim of this appendix is the following. For the quantum spaces under consideration we

list the non-vanishing components of the quantum metric and the totally antisymmetric

tensor.

The non-vanishing elements of the two-dimensional spinor metric have the values

ε12 = q−1/2, ε21 = −q1/2. (A.1)

The spinor metric is antisymmetric in a q-deformed sense and its inverse is given by

(ε−1)ij = εij = −εij. (A.2)

The non-vanishing elements of the three-dimensional Euclidean quantum metric are

g+− = −q, g33 = 1, g−+ = −q−1. (A.3)

For its inverse gAB we have

gAB = gAB. (A.4)

The non-vanishing components of the three-dimensional q-deformed epsilon tensor take

the form

ε−3+ = −q−4, ε3−+ = q−2,

ε−+3 = q−2, ε+−3 = −q−2,

ε3+− = −q−2, ε+3− = 1,

ε333 = −q−2λ. (A.5)

The elements of the lower indexed epsilon tensor we get from the identification

εABC = εCBA. (A.6)

Next we come to four-dimensional q-deformed Euclidean space. Its metric has the

non-vanishing components

g14 = q−1, g23 = g32 = 1, g41 = q. (A.7)

Its inverse is denoted by gµν and fulfills

gµν = gµν . (A.8)

The non-vanishing components of the epsilon tensor of four-dimensional q-deformed

Euclidean space are

ε1234 = 1, ε1432 = −q2, ε2413 = −q2,

ε2134 = −q, ε4132 = q2, ε4213 = q3,

ε1324 = −1, ε3412 = q2, ε2341 = −q2,

ε3124 = q, ε4312 = −q3, ε3241 = q2,

ε2314 = q2, ε1243 = −q, ε2431 = q3,

ε3214 = −q2, ε2143 = q2, ε4231 = −q4,

ε1342 = q, ε1423 = q2, ε3421 = −q3,

ε3142 = −q2, ε4123 = −q2, ε4321 = q4, (A.9)
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together with the non-classical components

ε3232 = −ε2323 = −q2λ. (A.10)

The quantum metric of q-deformed Minkowski space is given by

η00 = −1, η33 = 1, η+− = −q, η−+ = −q−1, (A.11)

with inverse

ηµν = ηµν . (A.12)

As non-vanishing components of the corresponding epsilon tensor we have

ε+30− = 1, ε+−03 = −q−2, ε3−+0 = q−2,

ε3+0− = −q−2, ε−+03 = q−2, ε−3+0 = q−4,

ε+03− = −1, ε0−+3 = q−2, ε30−+ = −q−2,

ε0+3− = 1, ε−0+3 = −q−2, ε03−+ = q−2,

ε30+− = q−2, ε+3−0 = −1, ε3−0+ = q−2,

ε03+− = −q−2, ε3+−0 = q−2, ε−30+ = −q−4,

ε+0−3 = q−2, ε+−30 = q−2, ε0−3+ = −q−4,

ε0+−3 = −q−2, ε−+30 = −q−2, ε−03+ = q−4, (A.13)

and

ε0−0+ = q−3λ, ε−0+0 = −q−3λ,

ε0333 = −q−2λ, ε3330 = q−2λ,

ε3033 = +q−2λ, ε3030 = −q−2λ,

ε3303 = −q−2λ, ε+0−0 = −q−1λ,

ε0303 = q−2λ, ε0+0− = q−1λ. (A.14)

Lowering the indices of the epsilon tensor is achieved by the quantum metric. In this

manner we have, for example,

εµνρσ = ηµµ′ηνν′ηρρ′ησσ′ εµ′ν′ρ′σ′

. (A.15)

B. q-Analogs of Pauli matrices and spin matrices

In this appendix we collect some essential ideas from ref. [59] concerning q-deformed

spinor calculus.

Let us recall that the Pauli matrices tell us how to combine two spinors xα, x̄β̇ to form

a four-vector Xµ:

Xµ =
2

∑

α=1, β̇=1

xα(σµ)αβ̇x̄β̇ , Xµ =
2

∑

α̇=1, β=1

x̄α̇(σ̄µ)α̇βxβ. (B.1)
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In order to express tensor products of two spinor components by vector components we

use so-called inverse Pauli matrices:

xαxβ̇ = Xµ(σ−1
µ )αβ̇ , xα̇xβ = Xµ(σ̄−1

µ )α̇β. (B.2)

Explicitly, the q-deformed Pauli matrices are given by

(a) (three-dimensional Euclidean space)

(σ+)αβ̇ = q1/2λ
1/2
+

(

0 0

0 1

)

, (σ−)αβ̇ = q1/2λ
1/2
+

(

1 0

0 0

)

,

(σ3)αβ̇ =

(

0 q

1 0

)

, (B.3)

(b) (four-dimensional Euclidean space)

(σ1)αβ̇ =

(

1 0

0 0

)

, (σ2)αβ̇ =

(

0 0

1 0

)

,

(σ3)αβ̇ =

(

0 1

0 0

)

, (σ4)αβ̇ =

(

0 0

0 1

)

, (B.4)

(c) (Minkowski space)

(σ+)αβ̇ =

(

0 0

0 q

)

, (σ3)αβ̇ = qλ
−1/2
+

(

0 q1/2

q−1/2 0

)

,

(σ−)αβ̇ =

(

q 0

0 0

)

, (σ0)αβ̇ = λ
−1/2
+

(

0 −q−1/2

q1/2 0

)

. (B.5)

In the case of three-dimensional q-deformed Euclidean space and q-deformed Minkow-

ski space we have

(σ̄µ)γ̇δ = q−1(R̂−1)αβ̇
γ̇δ(σ

µ)αβ̇ , (B.6)

where (R̂−1)αβ̇
γ̇δ denotes the inverse of the R̂-matrix for Uq(su(2)) [cf. eq. (2.44)]. For four-

dimensional q-deformed Euclidean space, however, σµ does not differ from σ̄µ. Finally, the

entries of the inverse Pauli matrices are determined by the orthogonality relations

(σµ)αβ̇(σ−1
ν )αβ̇ = δµ

ν , (σ̄µ)α̇β(σ̄−1
ν )α̇β = δµ

ν . (B.7)

In analogy to the undeformed case the q-deformed two-dimensional spin matrices are

defined by

(σµν)α
β ≡ (PA)µν

κλ(σκ)αα̇ εα̇α̇′

(σ̄λ)α̇′β′ εβ′β ,

(σ̄µν)α̇
β̇ ≡ (PA)µν

κλ(σ̄κ)α̇α εαα′

(σλ)α′β̇′ ε
β̇′β̇ , (B.8)

(σ−1
µν )α

β ≡ (PA)κλ
µν εαα′(σ−1

κ )α
′β̇′

εβ̇′β̇(σ̄−1
λ )β̇β,

(σ̄−1
µν )α̇

β̇ ≡ (PA)κλ
µν εα̇α̇′(σ̄−1

κ )α̇
′β′

εβ′β(σ−1
λ )ββ̇. (B.9)

Note that PA stands for q-analogs of antisymmetrizers.
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C. Explicit form of the q-deformed spin Casimir operators

Four-dimensional Euclidean algebra:

8−1W 2 = λ−2λ−1
+ (P 1P 4 + qP 2P 3)

− λ−2P 2P 3(K1K2 + q2K−1
1 K−1

2 )

− qλ−2P 1P 4(K−1
1 K2 + K1K

−1
2 − q−1λK1K2)

+ λ−1P 1P 3(K1K2L
+
1 − K1K

−1
2 L+

1 )

+ λ−1P 1P 2(K1K2L
+
2 − K−1

1 K2L
+
2 )

+ qλ−1(P 2P 4K1(K2 − K−1
2 )L−

1 + P 3P 4(K1 − K−1
1 )K2L

−
2 )

− (P 2P 3K1K
−1
2 + q−1P 1P 4K1K2)L

+
1 L−

1

− (P 2P 3K−1
1 K2 + q−1P 1P 4K1K2)L

+
2 L−

2

− q−1(P 1)2K1K2L
+
1 L+

2 + (P 2)2K1K2L
−
1 L+

2

+ (P 3)2K1K2L
+
1 L−

2 − q(P 4)2K1K2L
−
1 L−

2

− q−2λ(P 1P 2K1K2L
+
1 L−

1 L+
2 + P 1P 3K1K2L

+
1 L+

2 L−
2 )

− q−1λ(P 2P 4K1K2L
−
1 L+

2 L−
2 + P 3P 4K1K2L

+
1 L−

1 L−
2 )

− q−2λ2P 2P 3K1K2L
+
1 L−

1 L+
2 L−

2 . (C.1)

Poincaré algebra:

2−1W 2 = λ−2(q−2(P 3)2 − (P 0)2 + q−1λP 3P 0 − λ+P+P−)

+ (P+)2(τ3)−1/2 [q T−S1τ1 + q2(S1)2]

+ λ−1
+ (P 0)2(τ3)−1/2 [q−1T+T− + λ−2(q τ3 + q−11)]

− (P−)2(τ3)−1/2 [q−1T+T 2σ2 − q4τ3(T 2)2]

− (P 3)2(τ3)−1/2 [q τ3T−T 2τ1 − q−1 T+S1σ2

− q−1λ−1(σ2)2 − λT−T 2σ2 + (τ3 + q21 − λ2T+T−)T 2S1

+ λ−2λ−1
+ (q 1 + q−1τ3 − q−1λ2T+T−)]

− q−3/2λ−1λ
−1/2
+ (P+P 3 − P+P 0)(τ3)−1/2 [τ3T−(τ1)2

+ q τ3S1τ1 − q4T− − qλ2T+T−S1τ1 − q2λ2T+(S1)2]

− q3/2λ−1λ
−1/2
+ P+P 3(τ3)−1/2 [S1τ1 − q S1σ2 − q2λ2λ+T−T 2S1]

− q3/2λ
−1/2
+ P+P 0(τ3)−1/2 [λ+S1σ2 + qλ2λ+T−T 2S1 + q−2λS1τ1]

− P+P−(τ3)−1/2 [T+S1τ1 − T−T 2σ2 − λ−2(q τ3(τ1)2) + q−1(σ2)2)]

− P 3P 0(τ3)−1/2 [(1 − τ3)T 2S1 − λλ−1
+ (1 − λ−2τ3)

+ q−1T+S1σ2 − q τ3T−T 2τ1 + q−1λ−1(σ2)2

+ λT−T 2σ2 + λ2T+T−T 2S1 + 2q−1λ−1
+ T+T−]

− q−1/2λ
−1/2
+ (P 3P− − P 0P−)(τ3)−1/2 [λ−1T+ − λ−1T+(σ2)2

+ qλ−1τ3T 2σ2 − qλT+T−T 2σ2 + q4λτ3T−(T 2)2]
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− q1/2λ
1/2
+ P 3P−(τ3)−1/2 [q2λ−1λ−1

+ T 2σ2

+ λT+T 2S1 − q3λ−1τ3T 2τ1]

− q1/2λ−1λ
−1/2
+ (λλ+ − 1)P 0P−(τ3)−1/2 T 2σ2. (C.2)
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Commun. Math. Phys. 171 (1995) 383 [hep-th/9312179].

[19] V.K. Dobrev, New q-Minkowski space-time and q-Maxwell equations hierarchy from

q-conformal invariance, Phys. Lett. B 341 (1994) 133 [Erratum ibid. B 346 (1995) 427].

– 27 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB31%2C86
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB34%2C632
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB34%2C632
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JTPLA%2C13%2C323
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZFPRA%2C13%2C452
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZFPRA%2C13%2C452
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JTPLA%2C16%2C438
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JTPLA%2C16%2C438
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZFPRA%2C16%2C621
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB70%2C39
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB70%2C39
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD13%2C3214
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB62%2C335
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C111%2C613
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00064%2C1%2C193
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00040%2C1%2C178
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2CC48%2C159
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C130%2C381
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C130%2C381
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB293%2C344
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C171%2C383
http://arxiv.org/abs/hep-th/9312179
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB341%2C133


J
H
E
P
1
2
(
2
0
0
7
)
0
3
5

[20] S. Doplicher, K. Fredenhagen and J.E. Roberts, The quantum structure of space-time at the

Planck scale and quantum fields, Commun. Math. Phys. 172 (1995) 187 [hep-th/0303037].

[21] M. Chaichian and A.P. Demichev, Quantum Poincaré group without dilatation and twisted
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[52] S. Ferrara, M.A. Lledó and O. Macia, Supersymmetry in noncommutative superspaces, JHEP

09 (2003) 068 [hep-th/0307039].

[53] D. Mikulovic, Seiberg-Witten map for superfields on canonically deformed N = 1, D = 4

superspace, JHEP 01 (2004) 063 [hep-th/0310065].

[54] M.C. Witt, Deformierter Superraum und Diskussion zu einer deformierten

Supersymmetriealgebra, Ph.D. thesis Ludwig-Maximilians-Universität München, Fakultät für

Physik, Munich Germany (1998).

[55] P. Kosinski, J. Lukierski, P. Maslanka and J. Sobczyk, The classical basis for κ-deformed
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